A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids

Author:

Stenman Lotta K.1,Holma Reetta1,Eggert Ariane2,Korpela Riitta1

Affiliation:

1. Institute of Biomedicine, Pharmacology, Medical Nutrition Physiology, University of Helsinki, Helsinki, Finland; and

2. Institute of Water and Wetland Research, Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract

Impairment of gut barrier is associated with a fat-rich diet, but mechanisms are unknown. We have earlier shown that dietary fat modifies fecal bile acids in mice, decreasing the proportion of ursodeoxycholic acid (UDCA) vs. deoxycholic acid (DCA). To clarify the potential role of bile acids in fat-induced barrier dysfunction, we here investigated how physiological concentrations of DCA and UDCA affect barrier function in mouse intestinal tissue. Bile acid experiments were conducted in vitro in Ussing chambers using 4- and 20-kDa FITC-labeled dextrans. Epithelial integrity and inflammation were assayed by histology and Western blot analysis for cyclooxygenase-2. LPS was studied in DCA-induced barrier dysfunction. Finally, we investigated in a 10-wk in vivo feeding trial in mice the barrier-disrupting effect of a diet containing 0.1% DCA. DCA disrupted epithelial integrity dose dependently at 1–3 mM, which correspond to physiological concentrations on a high-fat diet. Low-fat diet-related concentrations of DCA had no effect. In vivo, the DCA-containing diet increased intestinal permeability 1.5-fold compared with control ( P = 0.016). Hematoxylin-eosin staining showed a clear disruption of the epithelial barrier by 3 mM DCA in vitro. A short-term treatment by DCA did not increase cyclooxygenase-2 content in colon preparations. UDCA did not affect barrier function itself, but it ameliorated DCA-induced barrier disruption at a 0.6 mM concentration. LPS had no significant effect on barrier function at 0.5–4.5 μg/ml concentrations. We suggest a novel mechanism for barrier dysfunction on a high-fat diet involving the effect of hydrophobic luminal bile acids.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3