Colonic blood flow responses in experimental colitis: time course and underlying mechanisms

Author:

Mori Mikiji,Stokes Karen Y.,Vowinkel Thorsten,Watanabe Naoyuki,Elrod John W.,Harris Norman R.,Lefer David J.,Hibi Toshifumi,Granger D. Neil

Abstract

Human inflammatory bowel diseases (IBD) are associated with significant alterations in intestinal blood flow, the direction and magnitude of which change with disease progression. The objectives of this study were to determine the time course of changes in colonic blood perfusion that occur during the development of dextran-sodium-sulfate (DSS)-induced colonic inflammation and to address the mechanisms that may underlie these changes in blood flow. Intravital microscopy was used to quantify blood flow (from measurements of vessel diameter and red blood cell velocity) in different-sized submucosal arterioles of control and inflamed colons in wild-type (WT) mice. A significant (18–30%) reduction in blood flow was noted in the smallest arterioles (<40 μm diameter) on days 4–6 of DSS colitis. The arteriolar responses to bradykinin in control and DSS-treated WT mice revealed an impaired endothelium-dependent, but not endothelium-independent, vasodilation in the inflamed colon. However, this impaired vasodilatory response to bradykinin after DSS treatment was not evident in mutant mice that overexpress Cu,Zn-superoxide dismutase. Rescue of the bradykinin-induced vasodilation during DSS colitis was also observed in mice that are genetically deficient in the NAD(P)H oxidase subunit gp91phox. These findings indicate that the decline in blood flow during experimental colitis may result from a diminished capacity of colonic arterioles to respond to endogenous endothelium-dependent vasodilators like bradykinin and that NAD(P)H oxidase-derived superoxide plays a major role in the induction of the inflammation-induced endothelium-dependent arteriolar dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference31 articles.

1. Postischemic endothelium-dependent vascular reactivity is preserved in adhesion molecule-deficient mice

2. Changes in Splanchnic Hemodynamics in Inflammatory Bowel Disease Non-Invasive Assessment by Doppler Ultrasound Flowmetry

3. Deniz M, Cetinel S, and Kurtel H.Blood flow alterations in TNBS-induced colitis: role of endothelin receptors.Inflamm Res53: 329–336, 2004.

4. Ebaugh FG.Quantitative measurement of gastrointestinal blood loss.J Lab Clin Med53: 77–82, 1959.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3