Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals

Author:

Iizuka Masahiro,Sasaki Kenji,Hirai Yohei,Shindo Kenichi,Konno Shiho,Itou Hiroaki,Ohshima Shigetoshi,Horie Yasuo,Watanabe Sumio

Abstract

Epimorphin is a mesenchymal protein that regulates morphogenesis of epithelial cells. Our preliminary study suggested a novel function of epimorphin in enhancing survival of intestinal epithelial cells (IEC). Oxidative stress leads to cell injury and death and is suggested to be a key contributor to pathogenesis of inflammatory bowel disease. This study was conducted to determine whether epimorphin protects IEC from oxidative stress. Rat intestinal epithelial cell line IEC-6 was cultured with epimorphin (10 and 20 μg/ml), and the life span of IEC was assessed. The mean life span of IEC-6 cells was prolonged 1.9-fold ( P < 0.0006) by treatment with epimorphin. We then examined the epimorphin signaling pathways. Epimorphin phosphorylated epidermal growth factor (EGF) receptor, activated the MEK/extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and phosphatidylinositol 3 (PI3) kinase/Akt pathways, phosphorylated Bad, and induced Bcl-XL and survivin. Hydrogen peroxide (1 mM) induced cell death in 92% of IEC-6 cells, but epimorphin dramatically diminished (88.7%) cell death induced by hydrogen peroxide ( P < 0.0001). This protective effect of epimorphin was significantly attenuated by inhibitors of MEK and PI3 kinase ( P < 0.0001) or EGF receptor-neutralizing antibody ( P = 0.0007). In wound assays, the number of migrated cells in the wound area decreased (72.5%) by treatment with 30 μM hydrogen peroxide, but epimorphin increased the number of migrated cells 3.18-fold ( P < 0.0001). These results support a novel function of epimorphin in protecting IEC from oxidative stress. This anti-oxidative function of epimorphin is dramatic and is likely mediated by the activation of EGF receptors and the MEK/extracellular signal-regulated kinase and PI3 kinase/Akt signaling pathways and through the induction of anti-apoptotic factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3