A novel small molecule CFTR inhibitor attenuates HCO3− secretion and duodenal ulcer formation in rats

Author:

Akiba Yasutada,Jung Michael,Ouk Samedy,Kaunitz Jonathan D.

Abstract

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO3) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO3] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTRinh-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTRinh-172 pretreatment 1 h before cysteamine. Superfusion of CFTRinh-172 (0.1–10 μM) over the duodenal mucosa had no effect on basal DBS but at 10 μM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTRinh-172, although basal DBS was increased at 24 h. CFTRinh-172 treatment had no effect on gastric acid or HCO3 secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTRinh-172-pretreated rats. CFTRinh-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO3 may be an important protective mechanism for duodenal epithelial cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3