Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats

Author:

Balasubramaniyan Vairappan1,Wright Gavin1,Sharma Vikram1,Davies Nathan A.1,Sharifi Yalda1,Habtesion Abeba1,Mookerjee Rajeshwar P.1,Jalan Rajiv1

Affiliation:

1. Liver Failure Group, UCL Institute of Hepatology, Royal Free Hospital, London, United Kingdom

Abstract

Ammonia is central in the pathogenesis of hepatic encephalopathy, which is associated with dysfunction of the nitric oxide (NO) signaling pathway. Ornithine phenylacetate (OP) reduces hyperammonemia and brain water in cirrhotic animals. This study aimed to determine whether endothelial NO synthase activity is altered in the brain of cirrhotic animals, whether this is associated with changes in the endogenous inhibitor, asymmetric-dimethylarginine (ADMA) and its regulating enzyme, dimethylarginine-dimethylaminohydrolase (DDAH-1), and whether these abnormalities are restored by ammonia reduction using OP. Sprague-Dawley rats were studied 4-wk after bile duct ligation (BDL) ( n = 16) or sham operation ( n = 8) and treated with placebo or OP (0.6 g/kg). Arterial ammonia, brain water, TNF-α, plasma, and brain ADMA were measured using standard techniques. NOS activity was measured radiometrically, and protein expression for NOS enzymes, ADMA, DDAH-1, 4-hydroxynonenol (4HNE), and NADPH oxidase (NOX)-1 were measured by Western blotting. BDL significantly increased arterial ammonia ( P < 0.0001), brain water ( P < 0.05), and brain TNF-α ( P < 0.01). These were reduced significantly by OP treatment. The estimated eNOS component of constitutive NOS activity was significantly lower ( P < 0.05) in BDL rat, and this was significantly attenuated in OP-treated animals. Brain ADMA levels were significantly higher and brain DDAH-1 significantly lower in BDL compared with sham ( P < 0.01) and restored toward normal following treatment with OP. Brain 4HNE and NOX-1 protein expression were significantly increased in BDL rat brain, which were significantly decreased following OP administration. We show a marked abnormality of NO regulation in cirrhotic rat brains, which can be restored by reduction in ammonia concentration using OP.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3