Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans

Author:

Wojtal Kacper A.1,Cee Alexandra1,Lang Silvia1,Götze Oliver12,Frühauf Heiko13,Geier Andreas12,Pastor-Anglada Marçal4,Torres-Torronteras Javier5,Martí Ramon5,Fried Michael1,Lutz Thomas A.678,Maggiorini Marco9,Gassmann Max6108,Rogler Gerhard18,Vavricka Stephan R.138

Affiliation:

1. Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland;

2. Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany;

3. Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland;

4. Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Disease (CIBER EHD), University of Barcelona, Barcelona, Spain;

5. Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain;

6. Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland;

7. Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland;

8. Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland

9. Intensive Care Unit, Department of Internal Medicine, University of Zurich, Zurich, Switzerland;

10. Cayetano Heredia University (UPCH), Lima, Peru; and

Abstract

Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals ( n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3