High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection

Author:

Liu Xinxin1,Blouin Jean-Marc1,Santacruz Arlette2,Lan Annaïg1,Andriamihaja Mireille1,Wilkanowicz Sabina2,Benetti Pierre-Henri1,Tomé Daniel1,Sanz Yolanda2,Blachier François1,Davila Anne-Marie1

Affiliation:

1. UMR914 Institut National de la Recherche Agronomique/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France; and

2. Microbial Ecophysiology and Nutrition Research Group, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain

Abstract

High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats ( P < 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and Faecalibacterium prausnitzii in both the cecum and colon ( P < 0.05 or less). In addition, the microbiota diversity was found to be higher in the cecum of HP rats but was lower in the colon compared with NP rats. In HP rats, the colonic and cecal luminal content weights were markedly higher than in NP rats ( P < 0.001), resulting in similar butyrate, acetate, and propionate concentrations. Accordingly, the expression of monocarboxylate transporter 1 and sodium monocarboxylate transporter 1 (which is increased by higher butyrate concentration) as well as the colonocyte capacity for butyrate oxidation were not modified by the HP diet, whereas the amount of butyrate in feces was increased ( P < 0.01). It is concluded that an increased bulk in the large intestine content following HP diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3