Affiliation:
1. Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903; and
2. Avda Universidad s/n Nursing School, 10071 Caceres, Spain
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of muscle dysfunction in acute inflammatory processes. The aim of these studies was to determine the effects of ROS on gallbladder muscle function in vitro. Single muscle cells were obtained by enzymatic digestion. H2O2 (70 μM) caused maximal contraction of up to 14% and blocked the response to CCK-8, ACh, and KCl. It did not affect the contractions induced by guanosine 5′- O-(3-thiotriphosphate), diacylglycerol, and inositol 1,4,5-trisphosphate that circumvent membrane receptors. The contraction induced by H2O2 was inhibited by AACOCF3 [cytosolic phospholipase A2(cPLA2) inhibitor], indomethacin (cyclooxygenase inhibitor), chelerythrine [protein kinase C (PKC) inhibitor], or PD-98059 [mitogen-activated protein kinase (MAPK) inhibitor]. H2O2 also reduced the CCK receptor binding capacity from 0.36 ± 0.05 pmol/mg protein (controls) to 0.17 ± 0.03 pmol/mg protein. The level of lipid peroxidation as well as the PGE2 content was significantly increased after H2O2 pretreatment. Unlike superoxide dismutase, the free radical scavenger catalase prevented the H2O2 induced contraction, and its inhibition of the CCK-8 induced contraction. It is concluded that ROS cause damage to the plasma membrane of the gallbladder muscle and contraction through the generation of PGE2 induced by cPLA2-cyclooxygenase and probably mediated by the PKC-MAPK pathway.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献