Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion

Author:

Caldwell Charles C.,Okaya Tomohisa,Martignoni Andre,Husted Thomas,Schuster Rebecca,Lentsch Alex B.

Abstract

Hepatic ischemia-reperfusion results in an acute inflammatory response culminating in the recruitment of activated neutrophils that directly injure hepatocytes. Recent evidence suggests that CD4+ lymphocytes may regulate this neutrophil-dependent injury, but the mechanisms by which this occurs remain to be elucidated. In the present study, we sought to determine the type of CD4+ lymphocytes recruited to the liver after ischemia-reperfusion and the manner in which these cells regulated neutrophil recruitment and tissue injury. Wild-type and CD4 knockout (CD4−/−) mice were subjected to hepatic ischemia-reperfusion. CD4+ lymphocytes were recruited in the liver within 1 h of reperfusion and remained for at least 4 h. These cells were comprised of conventional (αβTCR-expressing), unconventional (γδTCR-expressing), and natural killer T cells. CD4−/− mice were then used to determine the functional role of CD4+ lymphocytes in hepatic ischemia-reperfusion injury. Compared with wild-type mice, CD4−/− mice had significantly greater liver injury, yet far less neutrophil accumulation. Adoptive transfer of CD4+ lymphocytes to CD4−/− mice recapitulated the wild-type response. In wild-type mice, neutralization of interleukin (IL)-17, a cytokine released by activated CD4+ lymphocytes, significantly reduced neutrophil recruitment in association with suppression of MIP-2 expression. Finally, oxidative burst activity of liver-recruited neutrophils was higher in CD4−/− mice compared with those from wild-type mice. These data suggest that CD4+ lymphocytes are rapidly recruited to the liver after ischemia-reperfusion and facilitate subsequent neutrophil recruitment via an IL-17-dependent mechanism. However, these cells also appear to attenuate neutrophil activation. Thus the data suggest that CD4+ lymphocytes have dual, opposing roles in the hepatic inflammatory response to ischemia-reperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3