DMT1 (IRE) expression in intestinal and erythroid cells is regulated by peripheral benzodiazepine receptor-associated protein 7

Author:

Okazaki Yasumasa1,Ma Yuxiang1,Yeh Mary1,Yin Hong1,Li Zhen1,Yeh Kwo-yih12,Glass Jonathan1

Affiliation:

1. Feist-Weiller Cancer Center and the Departments of 1Medicine and

2. Physiology, Louisiana State University Health Services Center, Shreveport, Louisiana

Abstract

The divalent metal transporter 1 (DMT1) is essential for cellular uptake of iron, mediating iron absorption across the duodenal brush border membrane. We have previously shown that with iron feeding DMT1 in the brush border membrane undergoes endocytosis into the subapical compartment of enterocytes. To understand the mechanisms of iron-induced endocytosis of DMT1, we used the yeast two-hybrid system to find proteins that interact with DMT1 and isolated from a rat duodenal cDNA library a protein that interacts specifically with the IRE containing isoform of DMT1 {DMT1 [iron-responsive element (IRE)]}. The protein (Genbank AY336075 ) is 97.5% identical with peripheral benzodiazepine receptor-associated protein 7 (PAP7), a protein that interacts with the peripheral benzodiazepine receptor. PAP7 is ubiquitously expressed in the rat and in multiple cell lines with consensus sequences including a nuclear localization signal and a Golgi dynamic domain. PAP7, expressed on the brush border of rat duodenum, copurified with DMT1 in brush border membrane vesicles, and following iron feeding, was internalized in parallel with the internalization of DMT1. To determine if PAP7 plays a role in cellular iron metabolism, we downregulated PAP7 expression in K562 cells with small interfering RNA. Following the decrease in PAP7 protein, DMT1 (IRE) protein but not mRNA was significantly downregulated but without effect on DMT1 (non-IRE), transferin (Tf)R1, or ferritin expression. Lowered levels of PAP7 resulted also in decreased cell proliferation and G1cell cycle arrest. These data are consistent with PAP7 interacting with DMT1 (IRE) and regulating DMT1 (IRE) expression in K562 cells by modulating expression of DMT1 (IRE) protein.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3