Affiliation:
1. Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences and Institute of Environmental Sciences, University of Shizuoka, Shizuoka, Japan;
2. Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
Abstract
In gastrointestinal (GI) physiology, anion and fluid secretion is an important function for host defense and is induced by changes in the luminal environment. The transient receptor potential A1 (TRPA1) channel is considered to be a chemosensor in several sensory tissues. Although the function of TRPA1 has been studied in GI motility, its contribution to the transepithelial ion transport system has rarely been discussed. In the present study, we investigated the secretory effect of the potential TRPA1 agonist allyl isothiocyanate (AITC) in rat and human colon using an Ussing chamber. The mucosal application of AITC (10−6-10−3 M) induced Cl− and HCO3− secretion in a concentration-dependent manner, whereas the serosal application induced a significantly weaker effect. AITC-evoked anion secretion was attenuated by tissue pretreatment with piroxicam and prostaglandin (PG) E2; however, this secretion was not affected by TTX, atropine, or extracellular Ca2+ depletion. These experiments indicate that TRPA1 activation induces anion secretion through PG synthesis, independent of neural pathways in the colon. Further analysis also indicates that AITC-evoked anion secretion is mediated mainly by the EP4 receptor subtype. The magnitude of the secretory response exhibited segmental heterogeneity in rat colon. Real-time PCR analysis showed the segmental difference was corresponding to the differential expression of EP4 receptor and cyclooxygenase-1 and -2. In addition, RT-PCR, in situ hybridization, and immunohistochemical studies showed TRPA1 expression in the colonic epithelia. Therefore, we conclude that the activation of TRPA1 in colonic epithelial cells is likely involved in the host defense mechanism through rapid anion secretion.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献