Platelet-activating factor-induced apoptosis is blocked by Bcl-2 in rat intestinal epithelial cells

Author:

Lu Jing,Caplan Michael S.,Saraf Anita P.,Li Dan,Adler Luba,Liu Xuesong,Jilling Tamas

Abstract

Plateletactivating factor (PAF) is a key mediator in pathogenesis of inflammatory bowel diseases (IBDs) but mechanisms of PAF-induced mucosal injury are poorly understood. To determine whether apoptosis and the Bcl-2-family of apoptosis regulatory gene products play a role in PAF-induced mucosal injury, we stably and conditionally overexpressed bcl-2 in rat small intestinal epithelial cells-6 under the control of a lactose-inducible promoter. Western blot analysis and immuno-histochemistry were used to verify inducible Bcl-2 and to analyze Bcl-2 and a proapoptotic member of the Bcl-2 family, Bax, subcellular distribution. DNA fragmentation was quantified by ELISA, caspase activity was measured by using fluorogenic peptide substrates, and mitochondrial membrane potential was assayed by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and fluorescence digital imaging. Bcl-2 expression was highly inducible by lactose analog isopropyl-β-d-thiogalactoside (IPTG) and was localized predominantly to mitochondria. In the absence of bcl-2 overexpression and after treatment with PAF, Bax translocated to mitochondria, and mitochondrial membrane potential collapsed within 1 h, followed by caspase-3 activation, which peaked at 6 h with an ensuing DNA fragmentation maximizing at 18 h. After IPTG-induction of bcl-2 expression, PAF failed to induce DNA fragmentation, caspase-3 activation, Bax translocation, or a collapse of mitochondrial membrane potential. These data are the first to show that PAF can activate apoptotic machinery in enterocytes via a mechanism involving Bax translocation and collapse of mitochondrial membrane potential and that both of these events are under control by bcl-2 expression levels. A better understanding of the role of PAF and Bcl-2 family of apoptosis regulators in epithelial cell death might aid design of better therapeutic or preventive strategies for IBDs.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3