Affiliation:
1. Department of Physiology, Shandong University School of Medicine, Jinan, People's Republic of China;
2. Key Laboratory of Medical Neuroiology of Shandong University, Jinan, People's Republic of China; and
3. Department of Physiology & Pharmacology and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
Abstract
γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, and it is produced via the enzymatic activity of glutamic acid decarboxylase (GAD). GABA generates fast biological signaling through type A receptors (GABAAR), an anionic channel. Intriguingly, GABA is found in the jejunum epithelium of rats. The present study intended to determine whether a functional GABA signaling system exists in the intestinal epithelium and if so whether the GABA signaling regulates intestinal epithelial functions. RT-PCR, Western blot, and immunohistochemical assays of small intestinal tissues of various species were performed to determine the expression of GABA-signaling proteins in intestinal epithelial cells. Perforated patch-clamp recording was used to measure GABA-induced transmembrane current in the small intestine epithelial cell line IEC-18. The fluid weight-to-intestine length ratio was measured in mice that were treated with GABAAR agonist and antagonist. The effect of GABAAR antagonist on allergic diarrhea was examined using a mouse model. GABA, GAD, and GABAAR subunits were identified in small intestine epithelial cells of mice, rats, pigs, and humans. GABAAR agonist induced an inward current and depolarized IEC-18. Both GABA and the GABAAR agonist muscimol increased intestinal fluid secretion of rats. The increased intestinal secretion was largely decreased by the GABAAR antagonist picrotoxin or gabazine, but not by tetrodotoxin. The expression levels of GABA-signaling proteins were increased in the intestinal epithelium of mice that were sensitized and challenged with ovalbumin (OVA). The OVA-treated mice exhibited diarrhea, which was alleviated by oral administration of gabazine or picrotoxin. An endogenous autocrine GABAergic signaling exists in the mammalian intestinal epithelium, which upregulates intestinal fluid secretion. The intestinal GABAergic signaling becomes intensified in allergic diarrhea, and inhibition of this GABA-signal system alleviates the allergic diarrhea.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献