Control of differentiation-induced calbindin-D9kgene expression in Caco-2 cells by cdx-2 and HNF-1α

Author:

Wang Liyong,Klopot Anna,Freund Jean-Noel,Dowling Lauren N.,Krasinski Stephen D.,Fleet James C.

Abstract

Calbindin D9k(CaBP) is critical for intestinal calcium absorption; its in vivo expression is restricted to differentiated enterocytes of the small intestine. Our goal was to identify factors controlling the transcriptional regulation of this gene in the human intestine. Both the natural gene and a 4600-bp promoter construct were strongly regulated by differentiation (>100-fold) but not by treatment with 1,25(OH)2vitamin D (<2-fold) in the Caco-2 clone TC7. Deletion-mutation studies revealed that conserved promoter sequences for cdx-2 (at −3158 bp) and hepatocyte nuclear factor (HNF)-1 (at −3131 and at −98 bp) combined to control CaBP expression during differentiation. Other putative response elements were not important for CaBP regulation in TC7 cells (CCAAT enhancer binding protein, pancreatic duodenal homebox-1 (pdx-1), a proximal cdx-2 element). Mutation of the distal HNF-1 site had the greatest impact on CaBP gene expression through disruption of HNF-1α binding; both basal and differentiation-mediated CaBP expression was reduced by 80%. In contrast, mutation of the distal cdx-2 element reduced only basal CaBP expression. Whereas a 60% reduction of CaBP mRNA in the duodenum of HNF-1α null mice confirmed the physiological importance of HNF-1α for CaBP gene regulation, additional studies showed that maximal CaBP expression requires the presence of both HNF-1α and cdx-2. Our data suggest that cdx-2 is a permissive factor that influences basal CaBP expression in enterocytes and that HNF-1α modulates CaBP gene expression during cellular differentiation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3