Affiliation:
1. Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
2. Bioinformatics Mathematics and Statistics, AgResearch, Palmerston North, New Zealand; and
3. Riddet Institute, Massey University, Palmerston North, New Zealand
Abstract
Altered gastric accommodation and intestinal morphology suggest impaired gastrointestinal (GI) transit may occur in the Wistar-Kyoto (WKY) rat strain, as common in stress-associated functional GI disorders. Because changes in GI transit can alter microbiota composition, we investigated whether these are altered in WKY rats compared with the resilient Sprague-Dawley (SD) rats under basal conditions and characterized plasma lipid and metabolite differences. Bead transit was tracked by X-ray imaging to monitor gastric emptying (4 h), small intestine (SI) transit (9 h), and large intestine transit (12 h). Plasma extracts were analyzed by lipid and hydrophilic interaction liquid chromatography (HILIC) and liquid chromatography-mass spectrometry (LC-MS). Cecal microbial composition was determined by Illumina MiSeq 16S rRNA amplicon sequencing and analysis using the QIIME pipeline. Stomach retention of beads was 77% for WKY compared with 35% for SD rats. GI transit was decreased by 34% (9 h) and 21% (12 h) in WKY compared with SD rats. Excluding stomach retention, transiting beads moved 29% further along the SI over 4–9 h for WKY compared with SD rats. Cecal Ruminococcus, Roseburia, and unclassified Lachnospiraceae genera were less abundant in WKY rats, whereas the minor taxa Dorea, Turicibacter, and Lactobacillus were higher. Diglycerides, triglycerides, phosphatidyl-ethanolamines, and phosphatidylserine were lower in WKY rats, whereas cholesterol esters and taurocholic acids were higher. The unexpected WKY rat phenotype of delayed gastric emptying, yet rapid SI transit, was associated with altered lipid and metabolite profiles. The delayed gastric emptying of the WKY phenotype suggests this rat strain may be useful as a model for gastroparesis. NEW & NOTEWORTHY This study reveals that the stress-prone Wistar-Kyoto rat strain has a baseline physiology of gastroparesis and rapid small intestine transit, together with metabolic changes consistent with lipid metabolism-associated dysbiosis, compared with nonstress-prone rats. This suggests that the Wistar-Kyoto rat strain may be an appropriate animal model for gastroparesis. View this article's corresponding video summary at https://youtu.be/BeI39Jh2BLk .
Funder
Strategic Science investment Fund, AgResearch
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献