Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model

Author:

Kong Ming1,Zhu Longdong1,Bai Li1,Zhang Xiaohui1,Chen Yu1,Liu Shuang1,Zheng Sujun1,Pandol Stephen J.2,Han Yuan-Ping3,Duan Zhongping1

Affiliation:

1. Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China;

2. Cedars-Sinai Medical Center and Department of Veterans Affairs, Los Angeles, California;

3. The Center for Growth, Metabolism and Aging, the Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, and the National Key Laboratory of Biotherapy, Sichuan University, Chengdu, China

Abstract

Vitamin D deficiency (VDD) or insufficiency is recognized for its association with nonalcoholic steatohepatitis (NASH), whereas the underlying mechanism remains unknown. Using animal models, we found that vitamin D deficiency promoted the high-fat diet (HFD)-initiated simple steatosis into typical NASH, characterized by elevated hepatic inflammation and fat degeneration. The NASH derived from VDD + HFD was related to poor retention of bile acids in the liver and biliary tree, in line with downregulation of the ileal apical sodium-dependent bile acid cotransporter (iASBT). The impediment of hepatic bile acids by the VDD + HFD mice was related to increased expression of hepatic SREBP-1c and fatty acid synthase, suggesting that VDD may upregulate endogenous fatty acid synthesis into NASH through impaired enterohepatic circulation. Administration of 1,25(OH)2VD3 (calcitriol) corrected the NASH phenotypes in line with restoration of iASBT, promotion of bile filling in the biliary tree, suppression of hepatic lipogenesis, and inflammation. Moreover, administration of a bile acid-sequestering agent suppressed ileal fibroblast growth factor 15 expression, leading to increased iASBT expression to restore bile filling in the liver and biliary tree, which ameliorates steatosis and inflammation in the liver. These results suggest a novel mechanism for NASH development, by which VDD downregulates iASBT expression, resulting in a poor bile acid pool and elevation of hepatic lipogenesis and inflammation. In conclusion, vitamin D and bile acid sequestration may be explored as new strategies to treat or prevent NASH.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3