Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4–2 and by serum- and glucocorticoid-dependent kinase 1

Author:

Palmada M.,Dieter M.,Speil A.,Böhmer C.,Mack A. F.,Wagner H. J.,Klingel K.,Kandolf R.,Murer H.,Biber J.,Closs E. I.,Lang F.

Abstract

Serum and glucocorticoid-inducible kinase 1 (SGK1) is highly expressed in enterocytes. The significance of the kinase in regulation of intestinal function has, however, remained elusive. In Xenopus laevis oocytes, SGK1 stimulates the epithelial Na+ channel by phosphorylating the ubiquitin ligase Nedd4–2, which regulates channels by ubiquitination leading to subsequent degradation of the channel protein. Thus the present study has been performed to explore whether SGK1 regulates transport systems expressed in intestinal epithelial cells, specifically type IIb sodium-phosphate (Na+-Pi) cotransporter (NaPi IIb). Immunohistochemistry in human small intestine revealed SGK1 colocalization with Nedd4–2 in villus enterocytes. For functional analysis cRNA encoding NaPi IIb, the SGK isoforms and/or the Nedd4–2 were injected into X. laevis oocytes, and transport activity was quantified as the substrate-induced current ( IP). Exposure to 3 mM phosphate induces an IP in NaPi IIb-expressing oocytes. Coinjection of Nedd4–2, but not the catalytically inactive mutant C938SNedd4–2, significantly downregulates IP, whereas the coinjection of S422DSGK1 markedly stimulates IP and even fully reverses the effect of Nedd4–2 on IP. The effect of S422DSGK1 on NaPi IIb is mimicked by wild-type SGK3 but not by wild-type SGK2, constitutively active T308D,S473DPKB, or inactive K127NSGK1. Moreover, S422DSGK1 and SGK3 phosphorylate Nedd4–2. In conclusion, SGK1 stimulates the NaPi IIb, at least in part, by phosphorylating and thereby inhibiting Nedd4–2 binding to its target. Thus the present study reveals a novel signaling pathway in the regulation of intestinal phosphate transport, which may be important for regulation of phosphate balance.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SGK3 promotes vascular calcification via Pit-1 in chronic kidney disease;Theranostics;2024

2. Pharmacology of Mammalian Na+-Dependent Transporters of Inorganic Phosphate;Anion Channels and Transporters;2023

3. Contributions of SGK3 to transporter-related diseases;Frontiers in Cell and Developmental Biology;2022-12-01

4. Phosphate Transport in Epithelial and Nonepithelial Tissue;Physiological Reviews;2021-01-01

5. Intracellular signaling of the AMP-activated protein kinase;Advances in Protein Chemistry and Structural Biology;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3