Increased plasma corticosterone contributes to the development of alcoholic fatty liver in mice

Author:

Sun Xiuhua1,Luo Weijun23,Tan Xiaobing1,Li Qiong1,Zhao Yantao4,Zhong Wei1,Sun Xinguo1,Brouwer Cory23,Zhou Zhanxiang15

Affiliation:

1. Center for Translational and Biomedical Research,

2. Bioinformatics Services Division, UNC-Charlotte,

3. Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis;

4. Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, North Carolina

5. Department of Nutrition, The University of North Carolina at Greensboro,

Abstract

Ethanol ingestion increases endogenous glucocorticoid levels in both humans and rodents. The present study aimed to define a mechanistic link between the increased glucocorticoids and alcoholic fatty liver in mice. Plasma corticosterone levels were not affected in mice on a 2-wk ethanol diet regimen but significantly increased upon 4 wk of ethanol ingestion. Accordingly, hepatic triglyceride levels were not altered after 2 wk of ethanol ingestion but were elevated at 4 wk. Based on the observation that 2 wk of ethanol ingestion did not significantly increase endogenous corticosterone levels, we administered exogenous glucocorticoids along with the 2-wk ethanol treatment to determine whether the elevated glucocorticoid contributes to the development of alcoholic fatty liver. Mice were subjected to ethanol feeding for 2 wk with or without dexamethasone administration. Hepatic triglyceride contents were not affected by either ethanol or dexamethasone alone but were significantly increased by administration of both. Microarray and protein level analyses revealed two distinct changes in hepatic lipid metabolism in mice administered with both ethanol and dexamethasone: accelerated triglyceride synthesis by diacylglycerol O-acyltransferase 2 and suppressed fatty acid β-oxidation by long-chain acyl-CoA synthetase 1, carnitine palmitoyltransferase 1a, and acyl-CoA oxidase 1. A reduction of hepatic peroxisome proliferation activator receptor-α (PPAR-α) was associated with coadministration of ethanol and dexamethasone. These findings suggest that increased glucocorticoid levels may contribute to the development of alcoholic fatty liver, at least partially, through hepatic PPAR-α inactivation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3