Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1

Author:

Stearns Adam T.,Balakrishnan Anita,Rounds Jan,Rhoads David B.,Ashley Stanley W.,Tavakkolizadeh Ali

Abstract

Introduction: the intestinal Na+/glucose cotransporter (SGLT1) displays rapid anticipatory diurnal rhythms in mRNA and protein expression. The vagus nerve has been implicated in the entrainment of some transporters. We aimed to clarify the influence of the vagus nerve on the diurnal entrainment pathway for SGLT1 and examine the role of vagal afferent fibers. Methods: male Sprague-Dawley rats were randomized to three groups, total subdiaphragmatic vagotomy, selective deafferentation of the vagus with capsaicin, or sham laparotomy. Postoperatively, animals were maintained in a 12-h light-dark cycle with food access limited to night. On the ninth postoperative day, animals were euthanized to harvest jejunal mucosa at 6-h intervals starting at 10 AM. Whole cell SGLT1 protein was measured by semiquantitative densitometry of immunoblots. Sglt1 and regulatory subunit RS1 mRNA was assessed by quantitative PCR. Fluorogold tracer technique was used to confirm adequacy of the vagotomy. Results: the diurnal rhythm in intestinal SGLT1, with a 5.3-fold increase in Sglt1 mRNA at 4 PM, was preserved in both vagotomy and capsaicin groups. However, the rhythmicity in SGLT1 protein expression (2.3-fold peak at 10 PM; P = 0.041) was abolished following either total vagotomy or deafferentation. Lack of change in RS1 mRNA suggests this is independent of the RS1 regulatory pathway. Conclusion: SGLT1 transcription is independent of the vagus. However, dissociation of the protein rhythm from the underlying mRNA signal by vagotomy suggests the vagus may be involved in posttranscriptional regulation of SGLT1 in an RS1 independent pathway. Disruption following afferent ablation by capsaicin suggests this limb is specifically necessary.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3