Effects of bile acids on dog pancreatic duct epithelial cell secretion and monolayer resistance

Author:

Okolo Charles1,Wong Thomas1,Moody Mark W.1,Nguyen Toan D.1

Affiliation:

1. Division of Gastroenterology, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108

Abstract

Pancreatic duct epithelial cells (PDEC) mediate the secretion of fluid and electrolytes and are exposed to refluxed bile. In nontransformed cultured dog PDEC, which express many ion transport pathways of PDEC, 1 mM taurodeoxycholic acid (TDCA) stimulated an125Iefflux inhibited by DIDS and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and a86Rb+efflux inhibited by charybdotoxin. Inhibition by 1,2-bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid (BAPTA)-AM suggests mediation via increased intracellular Ca2+concentration, whereas the absence of lactate dehydrogenase release excludes cellular toxicity. At 1 mM, TDCA stimulated a larger125Iefflux than glycodeoxycholate; two dihydroxy bile acids, taurochenodeoxycholate and TDCA, were similarly effective, whereas a trihydroxy bile acid, taurocholate, was ineffective. In Ussing chambers, 1 mM serosal or 2 mM luminal TDCA stimulated an Iscincrease from confluent PDEC monolayers. TDCA also stimulated 1) a short-circuit current ( Isc) increase from basolaterally permeabilized PDEC subject to a serosal-to-luminal Clgradient that was inhibited by BAPTA-AM, DIDS, and NPPB and 2) an Iscincrease from apically permeabilized PDEC subject to a luminal-to-serosal K+gradient inhibited by BAPTA-AM and charybdotoxin. Along with the efflux studies, these findings suggest that TDCA interacts directly with PDEC to stimulate Ca2+-activated apical Clchannels and basolateral K+channels. Monolayer transepithelial resistance was only minimally affected by 1 mM serosal and 2 mM luminal TDCA but decreased after exposure to higher TDCA concentrations (2 mM serosal and 4 mM luminal). A secretory role for bile acids should be considered in pancreatic diseases associated with bile reflux.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bile Acids and Microbiota Interplay in Pancreatic Cancer;Cancers;2023-07-11

2. Fundamentals of Bicarbonate Secretion in Epithelia;Physiology in Health and Disease;2020

3. MECHANISMS OF BILE ACIDS ACTION ON PANCREATIC DUCTAL CELLS;Hepatology and Gastroenterology;2019

4. Fundamentals of Bicarbonate Secretion in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

5. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells;Cell Communication and Signaling;2015-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3