Segmental differences in upregulated apical potassium channels in mammalian colon during potassium adaptation

Author:

Perry Matthew D.1,Rajendran Vazhaikkurichi M.2,MacLennan Kenneth A.3,Sandle Geoffrey I.1

Affiliation:

1. Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, Leeds, United Kingdom;

2. Department of Biochemistry, West Virginia University, Morgantown, West Virginia; and

3. Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom

Abstract

Rat proximal and distal colon are net K+secretory and net K+absorptive epithelia, respectively. Chronic dietary K+loading increases net K+secretion in the proximal colon and transforms net K+absorption to net K+secretion in the distal colon, but changes in apical K+channel expression are unclear. We evaluated expression/activity of apical K+(BK) channels in surface colonocytes in proximal and distal colon of control and K+-loaded animals using patch-clamp recording, immunohistochemistry, and Western blot analyses. In controls, BK channels were more abundant in surface colonocytes from K+secretory proximal colon (39% of patches) than in those from K+-absorptive distal colon (12% of patches). Immunostaining demonstrated more pronounced BK channel α-subunit protein expression in surface cells and cells in the upper 25% of crypts in proximal colon, compared with distal colon. Dietary K+loading had no clear-cut effects on the abundance, immunolocalization, or expression of BK channels in proximal colon. By contrast, in distal colon, K+loading 1) increased BK channel abundance in patches from 12 to 41%; 2) increased density of immunostaining in surface cells, which extended along the upper 50% of crypts; and 3) increased expression of BK channel α-subunit protein when assessed by Western blotting ( P < 0.001). Thus apical BK channels are normally more abundant in K+secretory proximal colon than in K+absorptive distal colon, and apical BK channel expression in distal (but not proximal) colon is greatly stimulated as part of the enhanced K+secretory response to dietary K+loading.

Funder

Wellcome Trust

West Riding Medical Research Trust

NIH/NIDDK

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3