The developmentally regulated fetal enterocyte gene, ZP4, mediates anti-inflammation by the symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis

Author:

Gorreja Frida12,Rush Stephen TA1,Kasper Dennis L.34,Meng Di54,Walker W. Allan54

Affiliation:

1. School of Medical Sciences, Örebro University, Örebro, Sweden

2. Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden

3. Department of Microbiology and Immunology, Boston, Massachusetts

4. Harvard Medical School, Boston, Massachusetts

5. Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts

Abstract

Initial colonizing bacteria play a critical role in completing the development of the immune system in the gastrointestinal tract of infants. Yet, the interaction of colonizing bacterial organisms with the developing human intestine favors inflammation over immune homeostasis. This characteristic of bacterial-intestinal interaction partially contributes to the pathogenesis of necrotizing enterocolitis (NEC), a devastating premature infant intestinal inflammatory disease. However, paradoxically some unique pioneer bacteria (initial colonizing species) have been shown to have a beneficial effect on the homeostasis of the immature intestine and the prevention of inflammation. We have reported that one such pioneer bacterium, Bacteroides fragilis ( B. fragilis), and its surface component polysaccharide A (PSA) inhibit IL-1β-induced inflammation in a human primary fetal small intestinal cell line (H4 cells). In this study, using transcription profiling of H4 cellular RNA after pretreatment with or without PSA before an inflammatory stimulation of IL-1β, we have begun to further determine the cellular mechanism for anti-inflammation. We show that a developmentally regulated gene, zona pellucida protein 4 ( ZP4), is uniquely elevated after IL-1β stimulation and reduced with PSA exposure. ZP4 was known as a sperm receptor-mediating species-specific binding protein in the initial life of mammals. However, its intestinal epithelial function is unclear. We found that ZP4 is a developmentally regulated gene involved with immune function and regulated by both Toll-like receptor 2 and 4. Knockdown of ZP4-affected PSA inhibited IL-8 mRNA expression in response to IL-1β. This represents an initial study of ZP4 innate immune function in immature enterocytes. This study may lead to new opportunity for efficient treatment of NEC. NEW & NOTEWORTHY This study extends previous observations to define the cellular mechanisms of polysaccharide A-induced anti-inflammation in immature enterocytes using transcription profiling of enterocyte genes after preexposure to polysaccharide A before an inflammatory stimulus with IL-1β.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Beth Israel Deaconess Medical Center

Family Larsson-Rosenquist Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3