LPS-binding protein mediates LPS-induced liver injury and mortality in the setting of biliary obstruction

Author:

Minter Rebecca M.,Bi Xiaoming,Ben-Josef Gal,Wang Tianyi,Hu Bin,Arbabi Saman,Hemmila Mark R.,Wang Stewart C.,Remick Daniel G.,Su Grace L.

Abstract

It is generally accepted that low levels of lipopolysaccharide (LPS)-binding protein (LBP) augment the cell's response to LPS, whereas high levels of LBP have been shown to inhibit cell responses to LPS. Clinical studies and in vitro work by our group have demonstrated that, in the setting of liver disease, increased or acute-phase levels of LBP may actually potentiate rather than inhibit an overwhelming proinflammatory response. Therefore, in the present studies we sought to determine the role of acute-phase LBP in mediating morbidity and mortality in animals challenged with LPS in the setting of biliary obstruction. Using LBP-deficient mice and LBP blockade in wild-type mice, we demonstrate that high levels of LBP are deleterious in the setting of cholestasis. Following biliary obstruction and intraperitoneal LPS challenge, hepatic injury, hepatic neutrophil infiltration, and mortality were significantly increased in animals with an intact LBP acute-phase response. Kupffer cell responses from these animals demonstrated a significant increase in several inflammatory mediators, and Kupffer cell-associated LBP appears to be responsible for these differences, at least in part. Our results indicate that the role of LBP signaling in inflammatory conditions is complex and heterogeneous, and elevated levels of LBP are not always protective. Increased LBP production in the setting of cholestatic liver disease appears to be deleterious and may represent a potential therapeutic target for preventing overwhelming inflammatory responses to LPS in this setting.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3