Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats

Author:

Akiba Yasutada,Mizumori Misa,Guth Paul H.,Engel Eli,Kaunitz Jonathan D.

Abstract

We hypothesized that duodenal HCO3secretion alkalinizes the microclimate surrounding intestinal alkaline phosphatase (IAP), increasing its activity. We measured AP activity in rat duodenum in situ in frozen sections with the fluorogenic substrate ELF-97 phosphate and measured duodenal HCO3secretion with a pH-stat in perfused duodenal loops. We examined the effects of the IAP inhibitors l-cysteine or l-phenylalanine (0.1–10 mM) or the tissue nonspecific AP inhibitor levamisole (0.1–10 mM) on AP activity in vitro and on acid-induced duodenal HCO3secretion in vivo. AP activity was the highest in the duodenal brush border, decreasing longitudinally to the large intestine with no activity in stomach. Villous surface AP activity measured in vivo was enhanced by PGE2intravenously and inhibited by luminal l-cysteine. Furthermore, incubation with a pH 2.2 solution reduced AP activity in vivo, whereas pretreatment with the cystic fibrosis transmembrane regulator (CFTR) inhibitor CFTRinh-172 abolished AP activity at pH 2.2. l-Cysteine and l-phenylalanine enhanced acid-augmented duodenal HCO3secretion. The nonselective P2 receptor antagonist suramin (1 mM) reduced acid-induced HCO3secretion. Moreover, l-cysteine or the competitive AP inhibitor glycerol phosphate (10 mM) increased HCO3secretion, inhibited by suramin. In conclusion, enhancement of the duodenal HCO3secretory rate increased AP activity, whereas inhibition of AP activity increased the HCO3secretory rate. These data support our hypothesis that HCO3secretion increases AP activity by increasing local pH at its catalytic site and that AP hydrolyzes endogenous luminal phosphates, presumably ATP, which increases HCO3secretion via activation of P2 receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3