Protective roles of hepatic GABA signaling in acute liver injury of rats

Author:

Wang Shuanglian12345,Xiang Yun-Yan2345,Zhu Jianchun1,Yi Fan6,Li Jingxin145,Liu Chuanyong1,Lu Wei-Yang2345

Affiliation:

1. Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People’s Republic of China;

2. Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada;

3. Robarts Research Institute, University of Western Ontario, London, Ontario, Canada;

4. Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada;

5. Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and

6. Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, People’s Republic of China

Abstract

γ-Aminobutyric acid (GABA) is produced by various cells through the catalytic activity of glutamic acid decarboxylase (GAD). Activation of type-A GABA receptor (GABAAR) inhibits stem cell proliferation but protects differentiated cells from injures. The present study investigated hepatic GABA signaling system and the role of this system in liver physiology and pathophysiology. RT-PCR and immunoblot assays identified GAD and GABAAR subunits in rat livers and in HepG2 and Clone 9 hepatocytes. Patch-clamp recording detected GABA-induced currents in Clone 9 hepatocytes and depolarization in WITT cholangiocytes. The function of hepatic GABA signaling system in rats was examined using models of d-galactosamine (GalN)-induced acute hepatocytic injury in vivo and in vitro. The expression of GAD increased whereas GABAAR subunits decreased in the liver of GalN-treated rats. Remarkably, treating rats with GABA or the GABAAR agonist muscimol, but not the GABABR agonist baclofen, protected hepatocytes against GalN toxicity and improved liver function. In addition, muscimol treatment decreased the formation of pseudobile ductules and the enlargement of hepatocytic canaliculi in GalN-treated rats. Our results revealed that a complex GABA signaling system exists in the rat liver. Activation of this intrahepatic GABAergic system protected the liver against toxic injury. NEW & NOTEWORTHY Auto- and paracrine GABAergic signaling systems exist in the rat hepatocytes and cholangiocytes. Activation of GABA signaling protects liver function from d-galactosamine injury by reducing toxic impairment of hepatocytes and by decreasing cholangiocyte proliferation.

Funder

National Natural Science Foundation of China (NSFC)

Foundation for outstanding young scientists in Shandong Province

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3