Affiliation:
1. Department of Surgery, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298
Abstract
This study was undertaken to determine whether necrosis or apoptosis was the predominant mechanism responsible for gastric mucosal cellular death using the cell line known as AGS cells. Cells were exposed to various concentrations of deoxycholate (DC; 50–500 μM) for periods ranging from 30 min to 24 h. Lactic dehydrogenase (LDH) activity was used as a marker for necrotic cell death, whereas apoptosis was characterized by 4′,6-diamidino-2 phenylindole staining, DNA gel electrophoresis, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and DNA-histone-associated complex formation. When cells were bathed in Hank's balanced salt solution, DC-induced necrosis was the predominant mechanism of cell death. In contrast, when cells were bathed in Ham's F-12 solution (a more physiologically relevant medium), no evidence of cytotoxicity (by LDH assay) was discernible when cells were exposed to DC (50–300 μM) for periods as long as 8 h; instead, clear evidence of apoptosis was noted that was time and dose dependent. When cells were exposed for 24 h to these DC concentrations, cytotoxicity was also present, indicating necrosis as well. Furthermore, acidification of the ambient environment also evoked a necrotic response when exposed to DC. We demonstrated that apoptosis induced by DC shows early activation of caspase-3 that is dependent on both receptor and mitochondrial pathways. Our results indicate that physiological concentrations of DC (50–300 μM) primarily induce cellular death through an apoptotic process. Only after prolonged exposure to DC or acidification of the bathing solution does necrosis also occur.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献