Apoptosis is a major mechanism of deoxycholate-induced gastric mucosal cell death

Author:

Redlak Maria J.1,Dennis Miranda S.1,Miller Thomas A.1

Affiliation:

1. Department of Surgery, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298

Abstract

This study was undertaken to determine whether necrosis or apoptosis was the predominant mechanism responsible for gastric mucosal cellular death using the cell line known as AGS cells. Cells were exposed to various concentrations of deoxycholate (DC; 50–500 μM) for periods ranging from 30 min to 24 h. Lactic dehydrogenase (LDH) activity was used as a marker for necrotic cell death, whereas apoptosis was characterized by 4′,6-diamidino-2 phenylindole staining, DNA gel electrophoresis, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and DNA-histone-associated complex formation. When cells were bathed in Hank's balanced salt solution, DC-induced necrosis was the predominant mechanism of cell death. In contrast, when cells were bathed in Ham's F-12 solution (a more physiologically relevant medium), no evidence of cytotoxicity (by LDH assay) was discernible when cells were exposed to DC (50–300 μM) for periods as long as 8 h; instead, clear evidence of apoptosis was noted that was time and dose dependent. When cells were exposed for 24 h to these DC concentrations, cytotoxicity was also present, indicating necrosis as well. Furthermore, acidification of the ambient environment also evoked a necrotic response when exposed to DC. We demonstrated that apoptosis induced by DC shows early activation of caspase-3 that is dependent on both receptor and mitochondrial pathways. Our results indicate that physiological concentrations of DC (50–300 μM) primarily induce cellular death through an apoptotic process. Only after prolonged exposure to DC or acidification of the bathing solution does necrosis also occur.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3