Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways

Author:

Homsi Mahmoud El,Ducroc Robert,Claustre Jean,Jourdan Gérard,Gertler Arieh,Estienne Monique,Bado André,Scoazec Jean-Yves,Plaisancié Pascale

Abstract

Mucins play an essential role in the protection and repair of gastrointestinal mucosa. We recently showed that luminal leptin strongly stimulated mucin secretion in vivo in rat colon. In the present study, we challenged the hypothesis that leptin may act directly on goblet cells to induce mucin expression in rat and human intestinal mucin-producing cells (DHE and HT29-MTX). The endoluminal effect of leptin was also studied in vivo in rat perfused colon model. The presence of leptin receptors was demonstrated in the two cell lines by Western blot and RT-PCR. In rat DHE cells, leptin (0.01–10 nmol/l, 60 min) dose dependently increased the secretion of mucins (210 ± 3% of controls) and the expression of Muc2, Muc3, and Muc4 (twofold basal level) but not of Muc1 and Muc5AC. Luminal perfusion of leptin (60 min, 0.1–100 nmol/l) in rat colon also increased the mRNA level of Muc2, Muc3, and Muc4 but not of Muc1. In human HT29-MTX cells, leptin (0.01–10 nmol/l, 60 min) dose dependently enhanced MUC2, MUC5AC, and MUC4 mRNA levels. These effects were prevented by pretreatment of cells with the leptin mutein L39A/D40A/F41A, which acts as a receptor antagonist. Finally, pathway inhibition experiments suggest that leptin increased mucin expression by activating PKC-, phosphatidyl inositol 3-kinase-, and MAPK-dependent pathways but not the JAK/STAT pathway. In conclusion, leptin may contribute significantly to membrane-associated and secreted mucin production via a direct stimulation of colonic epithelial cells and the activation of leptin receptors. These data are consistent with a role for leptin in regulation of the intestinal barrier function.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3