Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis

Author:

Carreras Flavia I.,Lehmann Guillermo L.,Ferri Domenico,Tioni Mariana F.,Calamita Giuseppe,Marinelli Raúl A.

Abstract

Our previous work supports a role for aquaporin-8 (AQP8) water channels in rat hepatocyte bile formation mainly by facilitating the osmotically driven canalicular secretion of water. In this study, we tested whether a condition with compromised canalicular bile secretion, i.e., the estrogen-induced intrahepatic cholestasis, displays defective hepatocyte AQP8 functional expression. After 17α-ethinylestradiol administration (5 mg·kg body wt−1·day−1for 5 days) to rats, the bile flow was reduced by 58% ( P < 0.05). By subcellular fractionation and immunoblotting analysis, we found that 34 kDa AQP8 was significantly decreased by ∼70% in plasma (canalicular) and intracellular (vesicular) liver membranes. However, 17α-ethinylestradiol-induced cholestasis did not significantly affect the protein level or the subcellular localization of sinusoidal AQP9. Immunohistochemistry for liver AQPs confirmed these observations. Osmotic water permeability ( Pf) of canalicular membranes, measured by stopped-flow spectrophotometry, was significantly reduced (73 ± 1 vs. 57 ± 2 μm/s) in cholestasis, consistent with defective canalicular AQP8 functional expression. By Northern blotting, we found that AQP8 mRNA expression was increased by 115% in cholestasis, suggesting a posttranscriptional mechanism of protein level reduction. Accordingly, studies in primary cultured rat hepatocytes indicated that the lysosomal protease inhibitor leupeptin prevented the estrogen-induced AQP8 downregulation. In conclusion, hepatocyte AQP8 protein expression is downregulated in estrogen-induced intrahepatic cholestasis, presumably by lysosomal-mediated degradation. Reduced canalicular membrane AQP8 expression is associated with impaired osmotic membrane water permeability. Our data support the novel notion that a defective expression of canalicular AQP8 contributes as a mechanism for bile secretory dysfunction of cholestatic hepatocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3