Expression profiling identifies novel gene targets and functions forPdx1in the duodenum of mature mice

Author:

Chen Chin1,Sibley Eric1

Affiliation:

1. Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, California

Abstract

Transcription factor pancreatic and duodenal homeobox 1 (Pdx1) plays an essential role in the pancreas to regulate its development and maintain proper islet function. However, the functions of Pdx1 in mature small intestine are less known. We aimed to investigate the intestinal role of Pdx1 by profiling the expression of genes differentially regulated in response to inactivation of Pdx1 specifically in the intestinal epithelium. Pdx1 was conditionally inactivated in the intestinal epithelium of Pdx1flox/flox;VilCre mice. Total RNA was isolated from the first 5 cm of the small intestine from mature Pdx1flox/flox;VilCre and littermate control mice. Microarray analysis identified 86 probe sets representing 68 genes significantly upregulated or downregulated 1.5-fold or greater in Pdxflox/flox;VilCre mice maintained under standard conditions. Ingenuity Pathway Analysis revealed that functions of the differentially expressed genes are significantly associated with metabolism of nutrients including lipids and iron. Network analysis examining the interactions among the differentially expressed genes further supports the notion that Pdx1 may modulate metabolism of lipids and iron from mature intestinal epithelium. Following forced oil feeding, Pdx1flox/flox;VilCre mice showed diminished lipid staining in the duodenal epithelium and decreased serum triglyceride levels, indicating reduced lipid absorption compared with control duodenal epithelium. Blood samples from Pdx1flox/flox;VilCre mice have significantly lower mean values for mean corpuscular volume and mean corpuscular hemoglobin, consistent with iron deficiency. The absence of nonheme iron in the villous epithelium and lamina propria of Pdx1flox/flox;VilCre duodenum indicates that the duodenal epithelium lacking Pdx1 may have defects in importing iron through enterocytes, resulting in iron deficiency in Pdx1flox/flox;VilCre mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3