Comparison of rectoanal axial forces in health and functional defecatory disorders

Author:

Bharucha Adil E.,Croak Andrew J.,Gebhart John B.,Berglund Lawrence J.,Seide Barbara M.,Zinsmeister Alan R.,An Kai-Nan

Abstract

Anal manometry measures circumferential pressures but not axial forces that are responsible for defecation and contribute to fecal continence. Our aims were to investigate these mechanisms by measuring axial rectoanal forces with an intrarectal sphere or a latex balloon fixed at 8, 6, or 4 cm from the anal verge and connected to axial force and displacement transducers. Rectoanal forces and rectal pressures within a latex balloon were measured at baseline (i.e., at rest) and during maneuvers (i.e., squeeze, simulated evacuation, and a Valsalva maneuver) in 12 asymptomatic women and 12 women with symptoms of difficult defecation. Anal resting and squeeze pressures were also assessed by manometry and were similar in control patients and experimental patients. At rest, axial rectoanal forces were directed inward and increased as the device approached the anal verge. Control patients augmented this inward force when they squeezed and exerted an outward force during simulated expulsion and a Valsalva maneuver. The force change during maneuvers was also affected by device location and was highest at 4 cm from the verge. In experimental patients, the force at rest and the change in force during all maneuvers was lower than in control patients. The rectal pressure during a Valsalva maneuver was also lower in experimental patients than in control patients, suggestive of impaired propulsion. In conclusion, a subset of women with defecatory symptoms had weaker axial forces not only during expulsion but also during a Valsalva maneuver and when they squeezed (i.e., contracted) their pelvic floor muscles, suggestive of generalized pelvic floor weakness.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3