EnterotoxigenicEscherichia coliheat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway

Author:

Subramenium Ganapathy A.12,Sabui Subrata132,Marchant Jonathan S.4,Said Hamid M.132,Subramanian Veedamali S.132

Affiliation:

1. Department of Medicine, University of California, Irvine, California

2. Department of Veterans Affairs Medical Center, Long Beach, California

3. Department of Physiology and Biophysics, University of California, Irvine, California

4. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

Vitamin C is an antioxidant and acts as a cofactor for many enzymatic reactions. Humans obtain vitamin C from dietary sources via intestinal absorption, a process that involves the sodium-dependent vitamin C transporters-1 and -2 (SVCT1 and SVCT2). Enterotoxigenic Escherichia coli (ETEC) infection impacts intestinal absorption/secretory functions, but nothing is known about its effect on ascorbic acid (AA) uptake. Here we demonstrate that infection of Caco-2 cells with ETEC led to a significant inhibition in intestinal AA uptake. This inhibition was associated with a marked reduction in hSVCT1 and hSVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression levels as well as significant inhibition in the activity of both the SLC23A1 and SLC23A2 promoters. Similarly, exposure of mice to ETEC led to a significant inhibition in intestinal AA uptake and reduction in mSVCT1 and mSVCT2 protein, mRNA, and hnRNA expression levels. Inhibition was caused by the action of heat labile enterotoxin (LT), since infecting Caco-2 cells with LT-deficient ETEC (ΔLT) failed to impact AA uptake. Because LT activates adenylate cyclase, we also examined the effect of dibutyryl-cAMP in AA uptake by Caco-2 cells and observed a significant inhibition. Furthermore, treating the cells with celastrol, a specific NF-κB inhibitor, significantly blocked the inhibition of AA uptake caused by ETEC infection. Together, these data demonstrate that ETEC infection impairs intestinal AA uptake through a cAMP-dependent NF-κB-mediated pathway that regulates both SLC23A1 and SLC23A2 transcription.NEW & NOTEWORTHY Our findings demonstrate that heat-labile enterotoxin produced by enterotoxigenic Escherichia coli inhibits AA uptake in intestinal epithelial cells and mouse intestine. This effect is mediated through transcriptional repression of SLC23A1 (SVCT1) and SLC23A2 (SVCT2) via a cAMP-dependent NF-κB signaling pathway.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

U.S. Department of Veterans Affairs (VA)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3