Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation

Author:

Halangk Walter1,Krüger Burkhard2,Ruthenbürger Manuel3,Stürzebecher Jörg4,Albrecht Elke2,Lippert Hans1,Lerch Markus M.3

Affiliation:

1. Division of Experimental Surgery, Department of Surgery, Otto-von-Guericke-Universität, 39120 Magdeburg;

2. Division of Medical Biology, Department of Pathology, Universität Rostock, 18057 Rostock;

3. Department of Medicine B, Westfälische Wilhelms-Universität, 48129 Münster; and

4. Center for Vascular Biology and Medicine Erfurt, Friedrich-Schiller-Universität Jena, 99089 Erfurt, Germany

Abstract

A premature and intracellular activation of digestive zymogens is thought to be responsible for the onset of pancreatitis. Because trypsin has a critical role in initiating the activation cascade of digestive enzymes in the gut, it has been assumed that trypsin also initiates intracellular zymogen activation in the pancreas. We have tested this hypothesis in isolated acini and lobules from rat pancreas. Intracellular trypsinogen activation was induced by supramaximal secretagogue stimulation and measured using either specific trypsin substrates or immunoreactivity of the trypsinogen activation peptide (TAP). To prevent a trypsin-induced trypsinogen activation, we used the cell-permeant, highly specific, and reversible inhibitor Nα-(2-naphthylsulfonyl)-3-amidinophenylalanine-carboxymethylpiperazide (S124), and to prevent cathepsin-induced trypsinogen activation, we used the cysteine protease inhibitor E-64d. Incubation of acini or lobules in the presence of S124 completely prevented the generation of trypsin activity in response to supramaximal caerulein but had no effect whatsoever on the generation of TAP. Conversely, when trypsin activity was recovered at the end of the experiment by either washout of S124 from acini or extensive dilution of lobule homogenates, it was up to 400% higher than after caerulein alone and corresponded, in molar terms, to the generation of TAP. Both trypsin activity and TAP release were inhibited in parallel by E-64d. We conclude that caerulein-induced trypsinogen activation in the pancreas is caused by an E-64d-inhibitable mechanism such as cathepsin-induced trypsinogen activation, and neither involves nor requires intracellular trypsin activity. Specific trypsin inhibition, on the other hand, prevents 80% of trypsin inactivation or autodegradation in the pancreas.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3