Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity

Author:

van Acker Gijs J. D.1,Saluja Ashok K.1,Bhagat Lakshmi1,Singh Vijay P.1,Song Albert M.1,Steer Michael L.1

Affiliation:

1. Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215

Abstract

Intrapancreatic activation of trypsinogen is believed to play a critical role in the initiation of acute pancreatitis, but mechanisms responsible for intrapancreatic trypsinogen activation during pancreatitis have not been clearly defined. In previous in vitro studies, we have shown that intra-acinar cell activation of trypsinogen and acinar cell injury in response to supramaximal secretagogue stimulation could be prevented by the cell permeant cathepsin B inhibitor E64d (Saluja A, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, and Steer ML. Gastroenterology 113: 304–310, 1997). The present studies evaluated the role of intrapancreatic trypsinogen activation, this time under in vivo conditions, in two models of pancreatitis by using another highly soluble cell permeant cathepsin B inhibitor,l-3-trans-(propylcarbamoyl)oxirane-2-carbonyl-l-isoleucyl-l-proline methyl ester (CA-074me). Intravenous administration of CA-074me (10 mg/kg) before induction of either secretagogue-elicited pancreatitis in mice or duct infusion-elicited pancreatitis in rats markedly reduced the extent of intrapancreatic trypsinogen activation and substantially reduced the severity of both pancreatitis models. These observations support the hypothesis that, during the early stages of pancreatitis, trypsinogen activation in the pancreas is mediated by the lysosomal enzyme cathepsin B. Our findings also suggest that pharmacological interventions that inhibit cathepsin B may prove useful in preventing acute pancreatitis or reducing its severity.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3