L-Ornithine phenylacetate reduces ammonia in pigs with acute liver failure through phenylacetylglycine formation: a novel ammonia-lowering pathway

Author:

Kristiansen Rune Gangsøy1,Rose Christopher F.2,Fuskevåg Ole-Martin3,Mæhre Hanne4,Revhaug Arthur5,Jalan Rajiv6,Ytrebø Lars Marius1

Affiliation:

1. Department of Anesthesiology, University Hospital of North Norway and UiT The Arctic University of Norway, Tromsø, Norway;

2. Hepato-Neuro Laboratory, The University of Montreal Hospital Research Centre, Université de Montréal, Québec, Canada;

3. Department of Clinical Pharmacology, University Hospital of North Norway and UiT The Arctic University of Norway, Tromsø, Norway;

4. Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway;

5. Department of Digestive Surgery, University Hospital of North Norway and UiT The Arctic University of Norway, Tromsø, Norway; and

6. Liver Failure Group, University College London Institute for Liver and Digestive Health, Medical School, Royal Free Hospital, London, United Kingdom

Abstract

Glycine is an important ammoniagenic amino acid, which is increased in acute liver failure (ALF). We have previously shown that L-ornithine phenylacetate (OP) attenuates ammonia rise and intracranial pressure in pigs suffering from ALF but failed to demonstrate a stoichiometric relationship between change in plasma ammonia levels and excretion of phenylacetylglutamine in urine. The aim was to investigate the impact of OP treatment on the phenylacetylglycine pathway as an alternative and additional ammonia-lowering pathway. A well-validated and -characterized large porcine model of ALF (portacaval anastomosis, followed by hepatic artery ligation), which recapitulates the cardinal features of human ALF, was used. Twenty-four female pigs were randomized into three groups: 1) sham operated + vehicle, 2) ALF + vehicle, and 3) ALF + OP. There was a significant increase in arterial glycine concentration in ALF ( P < 0.001 compared with sham), with a three-fold increase in glycine release into the systemic circulation from the kidney compared with the sham group. This increase was attenuated in both the blood and brain of the OP-treated animals ( P < 0.001 and P < 0.05, respectively), and the attenuation was associated with renal removal of glycine through excretion of the conjugation product phenylacetylglycine in urine (ALF + vehicle: 1,060 ± 106 μmol/l; ALF + OP: 27,625 ± 2,670 μmol/l; P < 0.003). Data from this study provide solid evidence for the existence of a novel, additional pathway for ammonia removal in ALF, involving glycine production and removal, which is targeted by OP.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3