Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation

Author:

Liu Liu1,Geng Xiangrong1,Cai Yihong2,Copple Bryan3,Yoshinaga Masafumi4,Shen Jian5,Nebert Daniel W.6,Wang Hua2,Liu Zijuan1

Affiliation:

1. Department of Biological Sciences, Oakland University, Rochester, Michigan

2. Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, People’s Republic of China

3. Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan

4. Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida

5. Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York

6. Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio

Abstract

Zrt/Irt-like protein 8 (ZIP8) (encoded by Slc39a8) is a multifunctional membrane transporter that influxes essential metal cations Zn2+, Mn2+, Fe2+, and nonmetal inorganic selenite (HSeO3). Physiological roles of ZIP8 in different cell types and tissues remain to be elucidated. We aimed to investigate ZIP8 functions in liver. Two mouse models were used in this study: 1) 13- to 21-mo-old Slc39a8(+/neo) hypomorphs having diminished ZIP8 levels and 2) a liver-specific ZIP8 acute knockdown mouse (Ad-shZip8). Histology, immunohistochemistry, and Western blotting were used to investigate ZIP8-deficiency effects on hepatic injury, inflammatory changes, and oxidative stress. Selenium (Se) and zinc (Zn) were quantified in tissues by inductively coupled plasma-mass spectrophotometry. We found that ZIP8 is required to maintain normal liver function; moderate or acute decreases in ZIP8 activity resulted in hepatic pathology. Spontaneous liver neoplastic nodules appeared in ~50% of Slc39a8(+/neo) between 13 and 21 mo of age, exhibiting features of inflammation, fibrosis, and liver injury. In Ad-shZip8 mice, significant hepatomegaly was observed; histology showed ZIP8 deficiency was associated with hepatocyte injury, inflammation, and proliferation. Significant decreases in Se, but not Zn, were found in Ad-shZip8 liver. Consistent with this Se deficit, liver expression of selenoproteins glutathione peroxidases 1 and 2 was downregulated, along with decreases in antioxidant superoxide dismutases 1 and 2, consistent with increased oxidative stress. Thus, ZIP8 plays an important role in maintaining normal hepatic function, likely through regulating Se homeostasis and redox balance. Hepatic ZIP8 deficiency is associated with liver pathology, including oxidative stress, inflammation, proliferation, and hepatocellular injury. NEW & NOTEWORTHY Zrt/Irt-like protein 8 (ZIP8) is a multifunctional membrane transporter that facilitates biometal and mineral uptake. The role of ZIP8 in liver physiology has not been previously investigated. Liu et al. discovered unique ZIP8 functions, i.e., regulation of hepatic selenium content and association of ZIP8 deficiency in mouse liver with liver defects.

Funder

HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3