Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling

Author:

Hassani Hessameh,Lucas Guilherme,Rozell Björn,Ernfors Patrik

Abstract

Neuropeptide Y (NPY), a 36-amino acid peptide, is widely expressed in the central and peripheral nervous system. NPY is involved in the regulation of several physiological processes, including energy balance, food intake, and nociception. Recently, we showed that activation of the NPY Y1 receptor is required for cutaneous neurogenic inflammation. Because neurogenic inflammation could participate in colitis, the aim of this study was to investigate the role of the NPY Y1 receptor in acute colitis using mice genetically deficient of NPY Y1 receptor. In addition, the Y1 receptor antagonist H409/22, was also investigated. Animals received 5% dextran sulfate sodium (DSS) in drinking water for 7 days. One group of animals also received the Y1 receptor antagonist, administered intraperitoneally twice daily. Disease activity was assessed daily for 7 days in all groups. DSS induced colitis in all animals resulting in weight loss, diarrhea, epithelial damage, crypt shortening, and inflammatory infiltration. However, clinical manifestation of the disease was markedly attenuated in Y1 null mutant mice as well as in mice receiving the Y1 antagonist. Histological analysis showed that tissue damage and ulceration were less severe in Y1-deficient animals. Consistent with the clinical and histological data, capsaicin-induced plasma extravasation was significantly reduced in the gut of Y1 null mutant animals compared with treated wild-type animals. These data indicate that NPY and Y1 receptor are involved in intestinal inflammation and suggest that inhibition of NPY Y1 receptor signaling may provide a novel therapeutic approach in the treatment of colonic inflammation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference47 articles.

1. Neurochemical coding in the small intestine of patients with Crohn's disease.

2. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile- induced enteritis.

3. The capsaicin receptor: a heat-activated ion channel in the pain pathway

4. Cooper HS, Murthy SN, Shah RS, and Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69: 238–249, 1993.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3