Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization

Author:

Bai Haibo1,Zhu Qingfeng2,Surcel Alexandra3,Luo Tianzhi3,Ren Yixin3,Guan Bin1,Liu Ying1,Wu Nan4,Joseph Nora Eve5,Wang Tian -Li1,Zhang Nailing6,Pan Duojia6,Alpini Gianfranco4,Robinson Douglas N.3,Anders Robert A.1

Affiliation:

1. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;

2. Institute of Biomedical Sciences (IBS), Fudan University, Shanghai, People's Republic of China; and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;

3. Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland;

4. Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; and Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas

5. Department of Pathology, University of Chicago, Chicago, Illinois; and

6. Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland;

Abstract

The Hippo pathway effector Yes-associated protein (YAP) regulates liver size by promoting cell proliferation and inhibiting apoptosis. However, recent in vivo studies suggest that YAP has important cellular functions other than controlling proliferation and apoptosis. Transgenic YAP expression in mouse hepatocytes results in severe jaundice. A possible explanation for the jaundice could be defects in adherens junctions that prevent bile from leaking into the blood stream. Indeed, immunostaining of E-cadherin and electron microscopic examination of bile canaliculi of Yap transgenic livers revealed abnormal adherens junction structures. Using primary hepatocytes from Yap transgenic livers and Yap knockout livers, we found that YAP antagonizes E-cadherin-mediated cell-cell junction assembly by regulating the cellular actin architecture, including its mechanical properties (elasticity and cortical tension). Mechanistically, we found that YAP promoted contractile actin structure formation by upregulating nonmuscle myosin light chain expression and cellular ATP generation. Thus, by modulating actomyosin organization, YAP may influence many actomyosin-dependent cellular characteristics, including adhesion, membrane protrusion, spreading, morphology, and cortical tension and elasticity, which in turn determine cell differentiation and tissue morphogenesis.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

U.S. Department of Veterans Affairs (VA)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3