Chloride transport in rabbit esophageal epithelial cells

Author:

Abdulnour-Nakhoul Solange1,Nakhoul Nazih L.1,Caymaz-Bor Canan1,Orlando Roy C.1

Affiliation:

1. Departments of Medicine and Physiology, Tulane University School of Medicine, and Veterans Administration Medical Center, New Orleans, Louisiana 70112-2699

Abstract

We investigated Cl transport pathways in the apical and basolateral membranes of rabbit esophageal epithelial cells (EEC) using conventional and ion-selective microelectrodes. Intact sections of esophageal epithelium were mounted serosal or luminal side up in a modified Ussing chamber, where transepithelial potential difference and transepithelial resistance could be determined. Microelectrodes were used to measure intracellular Cl activity (a[Formula: see text]), basolateral or apical membrane potentials ( V mBL or V mC), and the voltage divider ratio. When a basal cell was impaled, V mBL was −73 ± 4.3 mV and a[Formula: see text] was 16.4 ± 2.1 mM, which were similar in presence or absence of bicarbonate. Removal of serosal Clcaused a transient depolarization of V mBL and a decrease in a[Formula: see text] of 6.5 ± 0.9 mM. The depolarization and the rate of decrease of a[Formula: see text] were inhibited by ∼60% in the presence of the Cl-channel blocker flufenamate. Serosal bumetanide significantly decreased the rate of change of a[Formula: see text] on removal and readdition of serosal Cl. When a luminal cell was impaled, V mC was −65 ± 3.6 mV and a[Formula: see text] was 16.3 ± 2.2 mM. Removal of luminal Cl depolarized V mC and decreased a[Formula: see text] by only 2.5 ± 0.9 mM. Subsequent removal of Cl from the serosal bath decreased a[Formula: see text]in the luminal cell by an additional 6.4 ± 1.0 mM. A plot of V mBL measurements vs. log a[Formula: see text]/log a[Formula: see text] (a[Formula: see text] is the activity of Cl in a luminal or serosal bath) yielded a straight line [slope ( S) = 67.8 mV/decade of change in a[Formula: see text]/a[Formula: see text]]. In contrast, V mC correlated very poorly with log a[Formula: see text]/a[Formula: see text] ( S = 18.9 mV/decade of change in a[Formula: see text]/a[Formula: see text]). These results indicate that 1) in rabbit EEC, a[Formula: see text] is higher than equilibrium across apical and basolateral membranes, and this process is independent of bicarbonate; 2) the basolateral cell membrane possesses a conductive Cl pathway sensitive to flufenamate; and 3) the apical membrane has limited permeability to Cl, which is consistent with the limited capacity for transepithelial Cl transport. Transport of Cl at the basolateral membrane is likely the dominant pathway for regulation of intracellular Cl.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3