Adaptive HNE-Nrf2-HO-1 pathway against oxidative stress is associated with acute gastric mucosal lesions

Author:

Ueda Kazuki,Ueyama Takashi,Yoshida Ken-ichi,Kimura Hiroko,Ito Takao,Shimizu Yasuhito,Oka Masashi,Tsuruo Yoshihiro,Ichinose Masao

Abstract

Disturbance of the microcirculation and generation of reactive oxygen species are crucial in producing acute gastric mucosal lesions (AGML). To understand the protective mechanism against mucosal injury and oxidative stress in the stomach, we investigated sequential expression and localization of a product of lipid peroxidation and a chemical mediator of the oxidative response array, 4-hydroxynonenal (HNE), transcriptional factor, NF-E2-related factor (Nrf2), and the inducible heme oxygenase (HO-1) in the injured stomach. AGML was produced by intragastric administration of 0.6 N HCl in male rats. Expression and localization of HNE, Nrf2, and HO-1 were investigated by Western blotting, immunohistochemistry, real-time RT-PCR, and in situ hybridization histochemistry. Mucosal lesions and expression of HNE and HO-1 were assessed by prior treatment with the PGI2analog beraprast or after sensory denervation by pretreatment with capsaicin. Mucosal lesions were assessed by prior treatment with a HO-1 inhibitor, zinc protoporphyrin (ZnPP). After AGML, increased generation of HNE was observed in the injured mucosa and the surrounding submucosa, followed by nuclear translocation of Nrf2 and upregulation of HO-1 in the macrophages located in the margin of the injured mucosa and in the submucosa. Pretreatment with beraprost attenuated AGML and downregulated the expression of HNE and HO-1, while sensory denervation aggravated AGML and upregulated the expression of HNE and HO-1. Pretreatment with ZnPP also aggravated AGML. The sequential HNE-Nrf2-HO-1 pathway in the gastric mucosal cells and the macrophages is involved in an adaptive mechanism against oxidative stress after AGML.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3