NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus

Author:

Demitrack Elise S.1,Gifford Gail B.1,Keeley Theresa M.1,Horita Nobukatsu1,Todisco Andrea2,Turgeon D. Kim2,Siebel Christian W.3,Samuelson Linda C.12

Affiliation:

1. Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan;

2. Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan; and

3. Department of Discovery Oncology, Genentech, Incorporated, San Francisco, California

Abstract

The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. NEW & NOTEWORTHY Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem cells induces hyperproliferation and tissue hypertrophy, suggesting that Notch may drive gastric tumorigenesis.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

HHS | NIH | National Center for Advancing Translational Sciences (NCATS)

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

HHS | NIH | National Cancer Institute (NCI)

American Association for Cancer Research (AACR)

AGA Research Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3