Affiliation:
1. Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
Abstract
Several human motility disorders have been shown to be associated with loss or defects in interstitial cells of Cajal (ICC) networks. Because tissue samples for these studies were taken from patients with well-advanced motility problems, it is difficult to determine whether the loss of ICC is a cause or a consequence of the disease process. To establish the cause-and-effect relationship of ICC loss in motility disorders, it may be feasible to use animal models in which ICC are lost as motility dysfunction develops. Several models with defects in ICC networks have been developed, and these include animals with defects in the Kit signaling pathway (e.g., white-spotting mutants that have defects in Kit receptors; steel mutants that have mutations in stem cell factor, the ligand for Kit; and animals that are chronically treated with reagents that block Kit or downstream signaling proteins). ICC do not die when Kit signaling is blocked, rather, they redifferentiate into a smooth musclelike phenotype. Diabetic animals (NOD/LtJ mice), animals with chronic bowel obstruction, and inflammatory bowel models also have defects in ICC networks that have been associated with motility disorders. By studying these models with molecular and genomic techniques it may be possible to determine the signals that cause loss of ICC and find ways of restoring ICC to dysfunctional tissues. This article discusses recent progress in the utilization of animal models to study the consequences of losing ICC on the development of motility disorders.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献