Use of a hanging-weight system for liver ischemic preconditioning in mice

Author:

Hart Melanie L.,Much Chressen,Köhler David,Schittenhelm Jens,Gorzolla Iris C.,Stahl Gregory L.,Eltzschig Holger K.

Abstract

Ischemic preconditioning (IP) represents a powerful experimental strategy to identify novel molecular targets to attenuate hepatic injury during ischemia. As a result, murine studies of hepatic IP have become an important field of research. However, murine IP is technically challenging, and experimental details can alter the results. Therefore, we systematically tested a novel model of hepatic IP by using a hanging-weight system for portal triad occlusion. This system has the benefit of applying intermittent hepatic ischemia and reperfusion without manipulation of a surgical clamp or suture, thus minimizing surgical trauma. Systematic evaluation of this model revealed a close correlation of hepatic ischemia time with liver damage as measured by alanine (ALT) and aspartate (AST) aminotransferase serum levels. Using different numbers of IP cycles and times intervals, we found optimal liver protection with four cycles of 3 min ischemia/3 min reperfusion as measured by ALT, AST, lactate dehydrogenase, and interleukin-6. Similarly, ischemia-associated increases in hepatic infarct size, neutrophil infiltration, and histological injury were maximally attenuated with the above regimen. To demonstrate transcriptional consequences of liver IP, we isolated RNA from preconditioned liver and confirmed transcriptional modulation of known target genes (equilibrative nucleoside transporters, acute-phase complement genes). Taken together, these studies confirm highly reproducible liver injury and protection by IP when using the hanging-weight system for hepatic ischemia and intermittent reperfusion. Further studies of murine IP may consider this technique.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3