Affiliation:
1. Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0370
Abstract
Little is known about homocysteine metabolism in intestine. To address this question, we investigated homocysteine metabolism under conditions of folate adequacy and folate deprivation in the Caco-2 cell line, a model of human intestinal mucosal cells. Caco-2 cells were cultured in media enriched with [3-13C]serine and [U-13C5]methionine tracers, and enrichments of intracellular free amino acid pools of these amino acids as well as homocysteine, cystathionine, and cysteine were measured by using gas chromatography/mass spectrometry. Homocysteine transsulfuration plus folate-dependent and total remethylation were quantified from these amino acid enrichments. Homocysteine remethylation accounted for 19% of the intracellular free methionine pool in cells cultured with supplemental folate, and nearly all one-carbon units used for remethylation originated from the three carbon of serine via folate-dependent remethylation. Labeling of cystathionine and cysteine indicated the presence of a complete transsulfuration pathway in Caco-2 cells, and this pathway produced 13% of the intracellular free cysteine pool. Appearance of labeled homocysteine and cystathionine in culture medium suggests export of these metabolites from intestinal cells. Remethylation was reduced by one-third in folate-restricted cell cultures ( P < 0.001), and only ∼50% of the one-carbon units used for remethylation originated from the three carbon of serine under these conditions. In conclusion, the three carbon of serine is the primary source of one-carbon units used for homocysteine remethylation in folate-supplemented Caco-2 cell cultures. Remethylation is reduced as a result of folate restriction in this mucosal cell model, and one-carbon sources other than the three carbon of serine contribute to remethylation under this condition.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献