Interstitial cells of Cajal and adaptive relaxation in the mouse stomach

Author:

Dixit Devika,Zarate Natalia,Liu Louis W. C.,Boreham Douglas R.,Huizinga Jan D.

Abstract

Interstitial cells of Cajal (ICC) are proposed to play a role in stretch activation of nerves and are under intense investigation for potential roles in enteric innervation. Most data to support such roles come from in vitro studies with muscle strips whereas data at the whole organ level are scarce. To obtain insight into the role of ICC in distention-induced motor patterns developing at the organ level, we studied distension-induced adaptive relaxation in the isolated whole stomach of wild-type and W/Wv mice. A method was developed to assess gastric adaptive relaxation that gave quantitative information on rates of pressure development and maximal adaptive relaxation. Pressure development was monitored throughout infusion of 1 ml of solution over a 10-min period. The final intraluminal pressure was sensitive to blockade of nitric oxide synthase, in wild-type and W/Wv mice to a similar extent, indicating NO-mediated relaxation in W/Wv mice. Adaptive relaxation occurred between 0.2 and 0.5 ml of solution infusion; this reflex was abolished by TTX, was not sensitive to blockade of nitric oxide synthase, but was abolished by apamin, suggesting that ATP and not nitric oxide is the neurotransmitter responsible for this intrinsic reflex. Despite the absence of intramuscular ICC (ICC-IM), normal gastric adaptive relaxation occurred in the W/Wv stomach. Because pressure development was significantly lower in W/Wv mice compared with wild type in all the conditions studied, including in the presence of TTX, ICC-IM may play a role in development of myogenic tone. In conclusion, a mouse model was developed to assess the intrinsic component of gastric accommodation. This showed that ICC-IM are not essential for activation of intrinsic sensory nerves nor ATP-driven adaptive relaxation nor NO-mediated relaxation in the present model. ICC-IM may be involved in regulation of (distention-induced) myogenic tone.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference36 articles.

1. Apamin blocks certain neurotransmitter-induced increases in potassium permeability

2. THE SYMPATHETIC ENDFORMATION, ITS SYNAPTOLOGY, THE INTERSTITIAL CELLS, THE PERITERMINAL NETWORK, AND ITS BEARING ON THE NEURONE THEORY. DISCUSSION AND CRITIQUE

3. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach.

4. Cajal RS. Histologie du système nerveux de l'Homme et des Vertébrés. Grand sympathique. Paris: Maloine, 1911, p. 891–942.

5. Cajal RS.Texture of the Nervous System of Man and the Vertebrates (vol. 3), edited by Pasik P and Pasik T. Vienna: Springer-Verlag, 2002.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3