Author:
Tobey N. A.,Argote C. M.,Awayda M. S.,Vanegas X. C.,Orlando R. C.
Abstract
Esophageal epithelial cells contain an apical cation channel that actively absorbs sodium ions (Na+). Since these channels are exposed in vivo to acid reflux, we sought the impact of high acidity on Na+channel function in Ussing-chambered rabbit epithelium. Serosal nystatin abolished short-circuit current ( Isc) and luminal pH titrated from pH 7.0 to pH ≥ 2.0 had no effect on Isc. Circuit analysis at pH 2.0 showed small, but significant, increases in apical and shunt resistances. At pH < 2.0, Iscincreased whereas resistance ( RT) decreased along with an increase in fluorescein flux. The change in Isc, but not RT, was reversible at pH 7.4. Reducing pH from 7.0 to 1.1 with H2SO4gave a similar pattern but higher Iscvalues, suggesting shunt permselectivity. A 10:1 Na+gradient after nystatin increased Iscby ∼4 μAmps/cm2and this declined at pH ≤ 3.5 until it reached ∼0.0 at pH 2.0. Impedance analysis on acid-exposed (non-nystatin treated) tissues showed compensatory changes in apical (increase) and basolateral (decrease) resistance at modest luminal acidity that were poorly reversible at pH 2.0 and associated with declines in capacitance, a reflection of lower apical membrane area. In esophageal epithelium apical cation channels transport Na+at gradients as low as 10:1 but do not transport H+at gradients of 100,000:1 (luminal pH 2.0). Luminal acid also inhibits Na+transport via the channels and abolishes it at pH 2.0. These effects on the channel may serve as a protective function for esophageal epithelium exposed to acid reflux.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献