Effect of luminal acidity on the apical cation channel in rabbit esophageal epithelium

Author:

Tobey N. A.,Argote C. M.,Awayda M. S.,Vanegas X. C.,Orlando R. C.

Abstract

Esophageal epithelial cells contain an apical cation channel that actively absorbs sodium ions (Na+). Since these channels are exposed in vivo to acid reflux, we sought the impact of high acidity on Na+channel function in Ussing-chambered rabbit epithelium. Serosal nystatin abolished short-circuit current ( Isc) and luminal pH titrated from pH 7.0 to pH ≥ 2.0 had no effect on Isc. Circuit analysis at pH 2.0 showed small, but significant, increases in apical and shunt resistances. At pH < 2.0, Iscincreased whereas resistance ( RT) decreased along with an increase in fluorescein flux. The change in Isc, but not RT, was reversible at pH 7.4. Reducing pH from 7.0 to 1.1 with H2SO4gave a similar pattern but higher Iscvalues, suggesting shunt permselectivity. A 10:1 Na+gradient after nystatin increased Iscby ∼4 μAmps/cm2and this declined at pH ≤ 3.5 until it reached ∼0.0 at pH 2.0. Impedance analysis on acid-exposed (non-nystatin treated) tissues showed compensatory changes in apical (increase) and basolateral (decrease) resistance at modest luminal acidity that were poorly reversible at pH 2.0 and associated with declines in capacitance, a reflection of lower apical membrane area. In esophageal epithelium apical cation channels transport Na+at gradients as low as 10:1 but do not transport H+at gradients of 100,000:1 (luminal pH 2.0). Luminal acid also inhibits Na+transport via the channels and abolishes it at pH 2.0. These effects on the channel may serve as a protective function for esophageal epithelium exposed to acid reflux.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensory Phenotype of the Oesophageal Mucosa in Gastro-Oesophageal Reflux Disease;International Journal of Molecular Sciences;2023-01-28

2. Pathophysiology of Gastroesophageal Reflux Disease;The Esophagus;2021-04-30

3. Esophageal afferent innervation and its role in gastro-esophageal reflux disease symptoms;Current Opinion in Gastroenterology;2021-04-24

4. Mucosal pathogenesis in gastro‐esophageal reflux disease;Neurogastroenterology & Motility;2020-10-28

5. Role of ion transporters in the bile acid-induced esophageal injury;American Journal of Physiology-Gastrointestinal and Liver Physiology;2016-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3