Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP

Author:

Webster Cynthia R. L.1,Blanch Christopher1,Anwer M. Sawkat1

Affiliation:

1. Departments of Biomedical Sciences and Clinical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536

Abstract

cAMP-mediated stimulation of hepatic bile acid uptake is associated with dephosphorylation and translocation of Na+-taurocholate (TC) cotransporting peptide (NTCP) to the plasma membrane. Although translocation of NTCP may be facilitated by dephosphorylation, the mechanism of dephosphorylation is unknown. The ability of cAMP to translocate and dephosphorylate NTCP is, in part, dependent on cAMP-mediated increases in cytosolic Ca2+concentration ([Ca2+]), indicating that a Ca2+/calmodulin-dependent protein phosphatase (PP2B) may be involved. Thus we studied the role of PP2B using the inhibitor cypermethrin (CM). Freshly isolated hepatocytes were pretreated with 1–5 nM CM for 30 min followed by 15 min incubation with 10 μM 8-(4-chlorophenylthio)cAMP. CM (5 nM) and FK-506 (5 μM) inhibited cAMP-stimulated TC uptake by 80 and 75%, respectively, without affecting basal TC uptake. CM also reversed cAMP-mediated NTCP dephosphorylation and translocation to 80 and 15% of the basal level, respectively. cAMP stimulated PP2B activity by 60%, and this effect was completely inhibited by 5 nM CM. PP2B dephosphorylated NTCP immunoprecipitated from control but not from cAMP-treated hepatocytes. The effect of CM was not due to any changes in cAMP-mediated increases in cytosolic [Ca2+] or decreases in mitogen-activated protein kinase (extracellular regulated kinases 1 and 2) activity. Taken together, these results suggest that cAMP dephosphorylates NTCP by activating PP2B in hepatocytes, and PP2B-mediated dephosphorylation of NTCP may be involved in cAMP-mediated NTCP translocation to the plasma membrane.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3