Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice

Author:

Verdu E. F.,Huang X.,Natividad J.,Lu J.,Blennerhassett P. A.,David C. S.,McKay D. M.,Murray J. A.

Abstract

Celiac disease is a gluten intolerance caused by a T-cell response against human leukocyte antigen (HLA)-DQ2 and DQ8-bound gluten peptides. Some subjects experience gastrointestinal symptoms in the absence of villous atrophy. Here we investigate the potential mechanisms of gut dysfunction in gluten-sensitive HLA-DQ8 transgenic mice. HLA-DQ8 mice were sensitized and gavaged with gliadin 3×/wk for 3 wk (G/G). Controls included 1) nonsensitized mice gavaged with rice (C); 2) gliadin-sensitized mice gavaged with rice (G/R); and 3) BSA-sensitized mice gavaged with BSA (BSA/BSA). CD3+ intraepithelial lymphocyte, macrophage, and FOX-P3-positive cell counts were determined. Acetylcholine release, small intestinal contractility, and epithelial ion transport were measured. Gut function was investigated after gluten withdrawal and in HLA-DQ6 mice. Intestinal atrophy was not observed in G/G mice. Recruitment of intraepithelial lymphocyte, macrophages, and FOX-P3+ cells were observed in G/G, but not in C, G/R, or BSA/BSA mice. This was paralleled by increased acetylcholine release from the myenteric plexus, muscle hypercontractility, and increased active ion transport in G/G mice. Changes in muscle contractility normalized in DQ8 mice after a gluten withdrawal. HLA-DQ6 controls did not exhibit the abnormalities in gut function observed in DQ8 mice. Gluten sensitivity in HLA-DQ8 mice induces immune activation in the absence of intestinal atrophy. This is associated with cholinergic dysfunction and a prosecretory state that may lead to altered water movements and dysmotility. The results provide a mechanism by which gluten could induce gut dysfunction in patients with a genetic predisposition but without fully evolved celiac disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3