Effect of the nitric oxide donor V-PYRRO/NO on portal pressure and sinusoidal dynamics in normal and cirrhotic mice

Author:

Edwards Claire,Feng Hong-Qiang,Reynolds Christopher,Mao Lan,Rockey Don C.

Abstract

Reduced sinusoidal endothelial nitric oxide (NO) production contributes to increased intrahepatic resistance and portal hypertension after liver injury. We hypothesized that V-PYRRO/NO, an NO donor prodrug metabolized “specifically” in the liver, would reduce portal venous pressure (PVP) without affecting the systemic vasculature. Liver injury was induced in male BALB/c mice by weekly CCl4gavage. PVP and mean arterial pressure were recorded during intravenous administration of V-PYRRO/NO. In vivo microscopy was used to monitor sinusoidal diameter and flow during drug administration. Mean PVP was increased in CCl4-treated mice compared with sham-treated mice. In dose-response experiments, the minimum dose of PYRRO/NO required to acutely lower PVP by 20%, the amount believed to yield a clinically meaningful outcome, was 200 nmol/kg. This dose decreased portal pressure in cirrhotic (23.4 ± 2.0%, P < 0.001 vs. vehicle) and sham-treated (19.5 ± 2.3%, P < 0.001 vs. vehicle) animals by a similar magnitude. This concentration also led to dilation of hepatic sinusoids and an increase in sinusoidal volumetric flow, consistent with a reduction of intrahepatic resistance. The effect of V-PYRRO/NO on mean arterial pressure was significant at all concentrations tested, including the lowest, 30 nmol/kg ( P < 0.001 vs. vehicle for all doses). We conclude that V-PYRRO/NO had widespread vascular effects and, as such, is unlikely to be suitable for treatment of portal hypertension. As the potential of this or other similar compounds for treatment of portal hypertension is evaluated, effects on the systemic vasculature will also need to be considered.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3