Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis

Author:

Cheng Jason H.,She Hongyun,Han Yuan-Ping,Wang Jiaohong,Xiong Shigang,Asahina Kinji,Tsukamoto Hidekazu

Abstract

Activation of hepatic stellate cells (HSC), a key event in liver fibrosis, is caused by diminished adipogenic transcription. This study investigated whether Wnt signaling contributes to “antiadipogenic” activation of HSC and liver fibrogenesis. Culture-activated HSC from normal rats and HSC from cholestatic rat livers were examined for expression of Wnt, Frizzled (Fz) receptors, and coreceptors by quantitative PCR. Wnt signaling was assessed by nuclear β-catenin and T cell factor (TCF) promoter activity. Dickkopf-1 (Dkk-1), a Wnt coreceptor antagonist, was transduced by an adenoviral vector to assess the effects of Wnt antagonism on culture activation of HSC and cholestatic liver fibrosis in mice. Messenger RNA for canonical (Wnt3a and 10b) and noncanonical (Wnt4 and 5a) Wnt genes, Fz-1 and 2, and coreceptors [low-density lipoprotein-receptor-related protein (LRP)6 and Ryk] are increased ∼3–12-fold in culture-activated HSC compared with quiescent HSC. The nuclear β-catenin level and TCF DNA binding are markedly increased in activated HSC. TCF promoter activity is stimulated with Wnt1 but inhibited by Chibby, a protein that blocks β-catenin interaction with TCF, and by Dkk-1. Dkk-1 enhances peroxisome proliferator-activated receptor-γ (PPARγ)-driven PPAR response element (PPRE) promoter activity, a key adipogenic transcriptional parameter, abrogates agonist-stimulated contraction, and restores HSC quiescence in culture. High expression of Dkk-1 increases apoptosis of cultured HSC. Expression of Wnt and Fz genes is also induced in HSC isolated from experimental cholestatic liver fibrosis, and Dkk-1 expression ameliorates this form of liver fibrosis in mice. These results demonstrate antiadipogenic Wnt signaling in HSC activation and therapeutic potential of Wnt antagonism for liver fibrosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 228 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3