Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of β1- and β2-adrenergic receptors

Author:

Zhang Jin,Halm Susan T.,Halm Dan R.

Abstract

Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two β-adrenergic receptor subtypes (β-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short-circuit current ( Isc) and transepithelial conductance ( Gt), consistent with this cation secretion. A β-adrenergic classification was supported by propranolol antagonism of this secretory response and the lack of effect by the α-AdrR antagonists BE2254 (α1-AdrR) and yohimbine (α2-AdrR). Subtype-selective antagonists CGP20712A (β1-AdrR), ICI-118551 (β2-AdrR), and SR59320A (β3-AdrR) were relatively ineffective at inhibiting the epi-stimulated Isc response. In combination, CGP20712A and ICI-118551 inhibited the response, which supported a synergistic action by β1-AdrR and β2-AdrR. Expression of mRNA for both β1-AdrR and β2-AdrR was indicated by RT-PCR of RNA from colonic epithelial cells. Protein expression was indicated by immunoblot showing bands at molecular weights consistent with monomers and oligomers. Immunoreactivity (ir) for β1-AdrR and β2-AdrR was prominent in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Cells in the pericryptal sheath also had β1-AdrRir but did not have discernable β2-AdrRir. The adrenergic sensitivity of K+ secretion measured by Isc and Gt was relatively low as indicated by EC50s of 41 ± 7 nM for epi and 50 ± 14 nM for norepi. Adrenergic activation of electrogenic K+ secretion required the involvement of both β1-AdrR and β2-AdrR, occurring with an agonist sensitivity reduced compared with reported values for either receptor subtype.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3